EFFECTS OF DIFFERENT POISON FACTORS ON THE DEACTIVATION AND CHARACTERISTICS OF CATALYSTS

1 JYH-CHERNG CHEN, ²YU‐CHENG CHENG

¹Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan ²Department of Safety, Health and Environmental Engineering, Hung Kuang University, Taichung, Taiwan Email: ¹jcchen2@mail.fcu.edu.tw, ²leo770119@hotmail.com

Abstract: The activity of a commercial Pt-Pd catalyst for VOC decomposition and the effects of different poison factors on the deactivation of catalysts were investigated. The characteristics of fresh and reacted catalysts at different reaction conditions were also analyzed and compared. Experimental results showed that the conversion efficiency of C_3H_6 by the catalysts were all up to 97.6% when the reaction condition was at $200-400^{\circ}$ Cwithout SO₂ gas. When the inflow gas contained 400ppm or 800ppmSO₂, the conversion efficiency of C₃H₆significantly decreased to 72.4% and 11.9%, respectively. The poisoning effect of SO_2 on the catalysts was more obvious at low temperature (200°C). When the reaction temperature increased to over 300° C, the conversion efficiency of C₃H₆by the catalysts would increase up to 96%. From the BET, SEM, EDS, and XRD analysis results, the major poisoning mechanismsof the catalyst were carbon deposition, sintering, and the formation of metal sulfides.Moreover, the Taguchi Orthogonal Array method was utilized to evaluate the influences of different poison factors and find the best operating conditions for the catalysts. The results showed that the influence of different factors on the activity of catalysts flowed the sequence of reaction temperature, SO₂concentration, and C_3H_6 concentration. The best reaction condition for the Pt-Pd catalyst was 400°C, 0ppm SO₂, and 1000ppm C₃H₆, where the conversion efficiency of C_3H_6 was up to 99%.

Keywords: Catalyst, Deactivation, Poison Factor, Characteristic, Taguchi Orthogonal Array.

I. INTRODUCTION

With the continuous development of industry and technology, various pollutants are generated and emitted, environmental pollution is becoming increasingly serious in many countries. Nevertheless, the raising public awareness of environmental protection and better living quality have pushed the regulations to be more rigorous. Therefore, many novel and efficient technologies for manufacturing and pollution control are continuously developed and utilized. One of the most popular technology is catalysis and many catalysts have been developed and widely applied in petroleum refining, chemical industry and pollution control.

As the catalysts are applied in the industrial manufacturing processes for periods of operation, they will be deactivated and must be renewed or regenerated. Catalyst deactivation means that the activity or selectivity of catalyst decreases over reaction time. The possible reasons cause the catalysts declined or deactivated include the thermal collapse, failure, or sintering due to the catalysts being operated at high temperatures, and the poisoning and fouling due to the inlet gas stream contained chemical substances such as sulfur, chloride, heavy metals and dust or ash, respectively[1-8]. Besides the activity and selectivity, the validity period of catalyst is also an important evaluation factor that should be taken into consideration. If the validity period of catalyst can be extended, the operation cost can be reduced and the economic value can be enhanced.

The deactivation and poisoning of a catalyst can be summarized as the following factors: fouling, sintering, collapse, and poisoning. (1)Fouling: As the gas stream contained small particles, dust and pollutants, the surface and pores of catalyst may be covered and blocked. Moreover, some pollutants may also form the coke on the surface or in the poresof catalyst. The effective reaction sites and contact areas between catalysts and reactants were reduced, so the activity of catalysts was declined. (2) Sintering: Sintering is an irreversible physical change. Metals or ash on the catalyst surface would form temporary and movable molecular intermediate products at high temperature. The active metals dispersed on the supports would be slowly gathering and growing up. The active sites and effective surface area of the catalyst would decrease. The sintering rate was depended on the reaction temperature. The oxidizing environment is more likely to occur sintering than the reducing environment. (3) Collapse: The catalysts would be broken or collapsed as they subjected to hit, pressure, or overheating. The crystal structures of catalyst's supports would be destructed or changed due to overheating and water vapor. (4)Poisoning: Various chemical pollutants would react and adsorb on the surfaces of catalysts to cause the catalysts declined. The possible poisoning substancesincluded phosphorus, sulfur, chlorine, lead, mercury, Sb, and Bi [9-17].

This study innovatively utilized the systematic approach method, Taguchi Orthogonal Array, to evaluate the effects of different poison factors on the activity and deactivation of catalysts. The results can provide useful information for practical applications of catalysts in many industrial processes and air pollution control system.

II. DETAILS EXPERIMENTAL

2.1. Test Proceduresof CatalystActivity and Deactivation

The activity and deactivation of a commercial Pt-Pd catalyst were performed and evaluated in a laboratory scale catalyst reaction system. The experimental conditions of catalyst tests were arranged by using Taguchi orthogonal array methodwith three factors $(reaction$ temperature, $SO₂ concentration$, and C_3H_6 concentration) and three levels (**Table 1**). Before the experiments, the commercial Pt-Pd catalyst was cutinto a catalyst cuboid of 2 grams. Then it was put in the middle of a quartz tube and the tube inserted into the catalyst reactor. The schematic diagram of experimental apparatus was shown in **Fig.1**. The tests were carried out at different reaction conditions, including different reaction temperatures (200, 300, and 400° C), different concentrations of $SO₂$ (0, 400, and 800 ppm), and different concentrations of C_3H_6 (1000, 2000, 4000 ppm). The inflow gas contained C_3H_6 or SO_2 gases with air as the carrier gas. The flow rates and concentrations of the three gases were accurately controlled by mass flow meters. After the gases were well mixed in a mixing room, they were introduced into the catalyst reactor at constant pressure and constant flow rate. Thetotal gas flow rate was 1.8L/min. Besides, the concentrations of SO_2 and C_3H_6 were intentionally set to be higher than those in normal conditionsin order to accelerate and enhance the deactivation and poisoning reactions in the finite experimental time.

Table 1:Experimental conditions of catalysts tests

2.2. Catalyst Characteristics Analyses

The analysis items and methods for the characteristics of fresh and reacted catalysts were summarized as follows: (1) The specific surface area, pore volume, and pore size of catalysts were measured by a specific surface area analyzer by gas adsorption method.The system temperature was decreased to 77K with the aid of liquid nitrogen, and the amount of nitrogen gas by physical adsorption on the catalysts were measured. Finally, the BET (Brunauer-Emmett-Teller) formula was used to calculate the specific surface area, pore volume and pore size of catalysts. (2) Scanning Electron Microscope (SEM) was utilized to observe the surface morphology, pore distribution and the carbon deposition or sintering on the catalysts. Furthermore, the Energy Dispersion Spectrum (EDS) was used for qualitative and semiquantitative analysis of the elements on the catalyst surface. (3) X-ray PowderDiffractometer (XRD) was used to identify the species of catalysts. The catalyst samples were pulverized in an agate mortar and pressed into test pieces for X-ray diffraction analysis. The scanning angle (2θ) ranged 5° ~75° and the scanning step was 4˚/min. In the excitation of incident rays, the specific diffraction spectrum of species was generated at different diffraction angles. The XRD patterns of catalysts were compared with the JCPDS(Joint Committee on Power Diffraction Standards) to identify the species on catalysts. (4) The compositions of elements (C, H, S, N)on the catalystswere analyzed by the Heraeus Elemental Analyzer.

III. RESULTS AND DISCUSSION

3.1. Effect of different reaction temperature on the catalysts

The activity of catalyst was evaluated by the conversion efficiency of propylene at different reaction temperature (200, 300, 400 $^{\circ}$ C). As shown in Fig.2, the conversion efficiency of propyleneincreased with the rising temperature. At 200° C and 1000 ppm propylene, the conversion efficiency of total hydrocarbons (THC) was only 97%. As the reaction temperature rose to 300° C, the conversion efficiency of total hydrocarbons increasedto 99% and even to 99.6% at 400° C. Therefore, the conversion efficiency of VOC and the activity of catalyst were higher at high temperature and increased with the reaction temperature.

reaction temperatures

Proceedings of ISER 62nd International Conference, Frankfurt, Germany, 4th -5th July 2017

3.2. Effect of Different SO² concentration on the catalysts

The deactivation and poisoning tests of the catalysts were carried out at different concentrations of $SO₂(0, 1)$ 400, and 800 ppm) and different temperature (200, 300, and 400 $^{\circ}$ C). The results showed that SO₂ gas had significant impacts on the catalysts and the conversion efficiency of THCs declined quickly with increasing the concentration of $SO₂$ as the reaction temperature was 200° C(as shown in **Fig. 3**). Without $SO₂$, the conversion efficiency of THCs was high as 99% and kept steady for a long time. However,the conversion efficiency of THCs decreased to 72.4% and reached steady after 45 minutesas the SO_2 concentration was 400 ppm. When the concentration of SO_2 increased to 800ppm, the conversion efficiency of THCs declined quickly to be only 11.9% and reached steady after 15 minutes. Therefore, the influences of $SO₂$ on the catalyst activity were increased with the concentration of SO_2 . SO² would cause the deactivation and poisoning of catalysts due to the generation of inactive metal sulfides.

As compared the conversion efficiency of THCsat 200° C with those at 300° C and 400° C, the influence of $SO₂$ on the catalyst was found to decreased when the reaction temperature rose to over 300 $^{\circ}$ C. The conversionefficiency of THCsat300 $^{\circ}$ C and 400° C were both improved and up to 96%. Therefore, high reaction temperature would alter the influence of SO_2 on catalysts by changing the condensation and accumulation of $SO₂$ on the catalysts as well as decreasing the reactions and formations of inactive metal sulfides.Moreover, the activity of catalyst was improved as the reaction temperature increased, as mentioned in section 3.1.

Fig.3. Conversion efficiency of C_3H_6 by catalyst at different SO_2 **concentrations**

3.3. Characteristics of poisoned catalysts

The specific surface area and pore volume of the catalysts poisoned at constant concentration of $SO₂$ (800ppm) but different temperatures (200, 300, 400 $^{\circ}$ C) and different concentrations of C₃H₆ (1000, 2000, and 4000ppm)were analyzedand shown in **Table 2**. From the results, the specific surface area of catalyst poisoned at 200°C decreased to 29.25 m^2/g from 38.55 m^2/g and the pore volume decreased to 0.008 cm³/g from 0.012 cm³/g; the specific surface area of poisoned catalyst at 300°Cdecreased to 23.34 m^2/g and the pore volume decreased to 0.006 cm³/g; the specific surface area of poisoned catalyst at 400° Cdecreased to 20.62 m²/g and the pore volume decreased to $0.005 \text{ cm}^3/\text{g}$. From the above changes (**Fig.4**), the specific surface area and the pore volume of catalysts would decrease with the temperature increased. The possible reason for the results might related to the carbon deposition and the sintering on the surface of catalysts.

Teachtu Calafysis					
Catalysts	Specific Surface Area (m^2/g)	Pore Volume $\text{ (cm}^3\text{/g)}$	Pore Diameter $\rm(\AA)$		
VOC catalyst (fresh)	38.5451	0.0118	12.8901		
Reacted catalyst $(200^{\circ}C,$ C_3H_61000 ppm)	29.2520	0.007540	10.3110		
Reacted catalyst $(300^{\circ}C,$	23.3393	0.005656	9.6930		
C_3H_62000 ppm Reacted catalyst $(400^{\circ}C,$ C_3H_64000 ppm)	20.6184	0.005418	10.5113		
50					
Specific Surface Area (m ² /g) 40					
30					
20					
10					
$\overline{0}$ Back ground 00°C · C3H6 1000ppm · C3H6 2000ppm · C3H6 4000ppm					
Fig.4. Specific surface areas of fresh and reacted catalysts at					

different reaction conditions

Proceedings of ISER 62nd International Conference, Frankfurt, Germany, 4th -5th July 2017

The XRD patterns of the poisoned catalysts at different conditions were shown in **Fig.5**. The major active species on the catalysts were $PtO₂$ and PdO , and the major species of support were $SiO₂$ and Al_2O_3 . During the catalytic tests, the active metals would react with SO₂to form sulfideswhich caused the poisoning and deactivation. $PdS₂$ was found to be the major species of sulfides.

The SEM pictures and EDS analysis results of the catalysts reacted at different temperature without $SO₂$ were shown in **Fig.6** and **Table 3**. As the reaction temperature and the concentration of propylene increased, the weight percentage of carbon on the surface increased. Although the value of carbon was negative in Table $3(C)$, but Fig.5(C)showed the phenomenon of sintering on the surface of catalyst.**Fig.7** and **Table 4** show the SEM pictures and EDS analysis results of the catalysts poisoned at 400 ppm $SO₂$. There were many carbon deposited on the surface and the percentage of carbon increased. The changes of reaction temperature and SO_2 concentration would decrease the conversion efficiency of THCs and increase carbon deposition. As the $SO₂$ concentration increased to 800 ppm, the SEM pictures and EDS analysis results of the poisoned catalysts were shown in **Fig.8** and **Table 5**. The surface morphology was rough and there were many particles on the surface. The carbon percentage in EDS analysis results was increased. Therefore, the carbon deposition on the catalysts was more serious if the catalyst reacted with $SO₂$. The carbon deposition was more obvious as the SO_2 concentrations increased. Besides, Fig.8(b) and Fig.8(c) showed some parts of catalyst surface were smooth due to the sintering phenomenon.

Fig.5. XRD patterns of reacted catalysts at different reaction conditions

(a)200°C, C_3H_64000 ppm, SO₂800ppm; $(b)300^{\circ}C$, C_3H_61000 ppm, SO₂800ppm (c) 400^oC,C₃H₆2000ppm, SO₂800ppm

 $200\Box$, C₃H₆1000ppm 300 \Box , C₃H₆2000ppm 400 \Box , C₃H₆4000ppm **Fig.6. SEM pictures (10kX) of reacted catalyst at different conditions**

Proceedings of ISER 62nd International Conference, Frankfurt, Germany, 4th -5th July 2017

at unierent conunums						
	$(A)200^{\circ}C$,		$(B)300^{\circ}$ C,		$(C)400$ ^o C,	
	C_3H_62000 ppm,		C_3H_64000 ppm,		C_3H_61000 ppm,	
		$SO2400$ ppm		$SO2400$ ppm	$SO2400$ ppm	
Element	Weight	Atomic	Weight	Atomic	Weight	Atomi
	%	%	%	%	%	$c\%$
C K	8.59	13.20	-10.87	-19.65	3.21	5.20
O K	55.33	63.80	61.74	83.81	56.22	68.46
Al K	30.06	20.55	38.86	31.28	33.03	23.85
S K	3.84	2.21	5.57	3.77	3.07	1.86
Pd L	0.40	0.07	2.80	0.57	2.21	0.41
Pt M	1.77	0.17	1.89	0.21	2.26	0.23
Totals	100.0		100.0		100.0	

Table 4:EDS analysis results of reacted catalysts at different conditions

Fig.8. SEM pictures (10kX) of reacted catalyst at different conditions

Table 5:EDS analysis results of reacted catalysts at different conditions

	$(A)200^{\circ}C$,		$(B)300^{\circ}$ C,		$(C)400^{\circ}C$,	
		C_3H_64000 ppm,	C_3H_6 1000ppm,		C_3H_6 2000ppm,	
		SO ₂ 800 ppm	$SO2800$ ppm		$SO2800$ ppm	
Element	Weight	Atomic	Weight	Atomic	Weight	Atomi
	%	%	%	%	$\%$	$c\%$
C K	9.33	14.21	4.29	6.88	3.90	6.23
O K	54.78	62.68	55.98	67.36	55.60	66.7
A1 K	30.83	20.92	31.07	22.17	33.93	8 24.1
S K	3.49	1.99	5.08	3.05	4.01	2.40
Pd L	0.53	0.09	2.31	0.42	2.02	0.36
Pt M	1.04	0.10	1.27	0.12	0.55	0.05
Totals	100.0		100.0		100.0	

3.4. Analysis of effect factorsfor catalyst activity

In order to evaluate the influences of different poison factors on the activity and deactivation of catalysts, MINITAB software was used to calculate the signal to noise ratios (S/N ratios) of different factors. The analysis results were shown in **Table 6**. The effects of different factors on the activity of catalyst followed the sequence of reaction temperature, concentration of SO_2 , and concentration of C_3H_6 . From the experimental results, the conversion efficiency of THCs at different reaction temperature (200, 300, and 400° C) were quite different. Reaction temperature was the most important factor that influence the activity of catalyst for decomposing the total hydrocarbons.

Fig. 9 showed the effects (S/N ratios) of different factorson the activity of catalysts. The results indicated that the best reaction conditions of catalysts for the conversion of C_3H_6 were reaction temperature at 400 $^{\circ}$ C and the concentrations of SO₂ and C₃H₆ was 0ppm and 1000ppm, respectively. The activity of catalysts for VOC conversion was increased with the rising reaction temperature, decreasing the concentration of SO_2 , and decreasing the concentration of C_3H_6 .

Table 6: S/N ratios of different factors on the activity of catalysts

Level	Temp. $(^{\circ}C)$	SO ₂ (ppm)	$C_3H_6(ppm)$
	32.83	39.89	39.78
2	39.85	39.00	39.02
3	39.92	33.71	33.80
Delta	7.09	6.18	5.98
Rank			

catalysts

CONCLUSIONS

The activity and deactivation of a commercial Pt-Pd catalyst were tested and studied at different reaction temperatures and concentrations of SO_2 and C_3H_6 . Experimental results could be summarized as the following conclusions:

- 1. The VOC catalyst was easily poisoned by $SO₂$, the conversion efficiency of THCs decreased with the rising concentrations of $SO₂$. The conversion efficiency of THCs at 200° C and 0, 400, 800ppm SO2was 97.64 %, 72.43 %, and 11.88%, respectively.
- 2. The influence and poisoning phenomenon of $SO₂$ on the catalysts was obvious at the condition of 200 $^{\circ}$ C, 800ppm SO₂, and 4000ppm C₃H₆.
- 3. When the reaction temperature was higher than 300 $^{\circ}$ C, the activity of catalyst for C₃H₆conversion was increased. The best reaction temperature of the catalyst was 400° C. The conversion efficiency of THCs at 400° C could reach $98.3 \sim 99.55$ %.
- 4. The Taguchi orthogonal array method was utilized to evaluate the influences of different factors on the activity of catalysts. From the results, the major factor influencing the activity of catalysts was reaction temperature, the second was the concentration of $SO₂$, and the last was the concentration of C_3H_6 .

5. The results of XRD analysis showed the major active metal species in the VOC catalyst were PdO and PtO₂, which would react with $SO₂$ to form $PdS₂$ as the catalyst was poisoned.

ACKNOWLEDGMENTS

The author gratefully acknowledges the Ministry of Science and Technology, R.O.C. (Taiwan) for the financial support under project no. NSC 100-2628-E-241-003-MY3 and MOST 104-2221-E-035-093- MY3.

REFERENCES

- 1. C.H. Bartholomew, "Mechanisms of catalyst deactivation", Applied Catalysis A: General, vol.212, issue 1-2, pp.17-60, 2001.
- 2. S. Elbouazzaoui, E. Corbos, X. Courtois, P. Marecot, and D. Duprez, "A study of the deactivation by sulfur and regeneration of a model NSR $Pt/Ba/Al_2O_3$ catalyst", Applied Catalysis B: Environmental, vol.61, issue 3-4, pp.236-243, 2005.
- 3. J.A. Moulijn, A. Van Diepen, and F.Kapteijn, "Catalyst deactivation: Is it predictable? What to do?" Applied Catalysis A: General, vol.212, issue 1-2, pp.3-16, 2001.
- 4. S.B. Rasmussen, A. Kustov, J. Due-Hansen, B. Siret, F. Tabaries, and R. Fehrmann, "Characterization and regeneration of pt-catalysts deactivated in municipal waste flue gas", Applied Catalysis B: Environmental, vol.69, issue 1-2, pp.10- 16.2006 .
- 5. B.Darif, S.Ojala, M.Kärkkäinen, S. Pronier, T. Maunula, R. Brahmi, R.L. Keiski, "Study on sulfur deactivation of catalysts for DMDS oxidation", Applied Catalysis B: Environmental, vol.206, pp.653-665, 2017.
- 6. X. Yang, "An experimental investigation on the deactivation and regeneration of a steam reforming catalyst", Renewable Energy, vol.112, pp.17-24, 2017.
- 7. H. Zhang, Z.Hou, Y. Zhu, J. Wang, and Y. Chen, "Sulfur deactivation mechanism of $Pt/MnOx-CeO₂$ for soot oxidation:

Surface property study", Applied Surface Science, vol.396, pp.560-565, 2017.

- 8. S. Ordóñez, F. V Dı́ ez, and H.Sastre, "Characterisation of the deactivation of platinum and palladium supported on activated carbon used as hydrodechlorination catalysts", Applied Catalysis B: Environmental, vol.31, issue 2, pp.113-122, 2001.
- 9. R.Khazanchi, D. Reddy, and D. Bhatia, "Kinetic model for the reversible deactivation of a $Pt/Al₂O₃$ catalyst during NO oxidation", Chemical Engineering Journal, vol.314, pp.139- 151, 2017.
- 10. A.T.Gremminger, H.W. Pereira de Carvalho, R. Popescu, J.D.Grunwaldt, and O.Deutschmann, "Influence of gas composition on activity and durability of bimetallic Pd-Pt/Al₂O₃ catalysts for total oxidation of methane", Catalysis Today, vol.258, part 2, pp.470-480, 2015.
- 11. M.Checa, A. Marinas, J.M. Marinas, and F.J. Urbano, "Deactivation study of supported Pt catalyst on glycerol hydrogenolysis", Applied Catalysis A: General, vol.507, pp.34-43, 2015.
- 12. F.T.Zangeneh, A.Taeb, K.Gholivand, and S. Sahebdelfar, "Kinetic study of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al₂O₃ catalyst", Journal of Energy Chemistry, vol.22, issue 5, pp.726-732, 2013.
- 13. M.H. Wiebenga, C.H. Kim, S.J. Schmieg, S.H. Oh, D.B. Brown, D.H. Kim, J.H. Lee, and C. H.F. Peden, "Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts", Catalysis Today, vol.184, issue 1, pp.197-204, 2012.
- 14. D.M. Fernandes, C.F. Scofield, A.A.Neto, M.J.B. Cardoso, and F.M.Z.Zotin, "Thermal deactivation of Pt/Rh commercial automotive catalysts", Chemical Engineering Journal, vol.160, issue 1, pp.85-92, 2010.
- 15. G.Corro, C. Cano, and J.L.G. Fierro, "A study of Pt–Pd/γ- Al_2O_3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning", Journal of Molecular Catalysis A: Chemical, vol.315, issue 1, pp.35-42, 2010.
- 16. J.Dawody, M.Skoglundh, L. Olsson, and E. Fridell, "Sulfur deactivation of Pt/SiO2, Pt/BaO/Al2O3, and BaO/Al2O³ NOx storage catalysts: Influence of $SO₂$ exposure conditions", Journal of Catalysis, vol.234, issue 1, pp.206-218, 2005.
- 17. A.Sirijaruphan, J.G. Goodwin Jr., and R.W. Rice, "Investigation of the initial rapid deactivation of platinum catalysts during the selective oxidation of carbon monoxide", Journal of Catalysis, vol.221, issue 2, pp.288-293, 2004.
