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Abstract - The classification of Hyperspectral Image HSI is important in various fields where more discriminative 

characteristics are provided by the hundreds of narrow-band radiation information. Bayesian CNN is a very powerful method 

used in various difficult classification problems. In this work, Bayesian CNN model was built and applied on Pavia dataset. 

In order to compare the Bayesian results with other methods, two other approaches were applied. Machine learning methods 

are more frequently used, which uses both labeled and unlabeled data to fit the model. SVM and RF were used. Pretrained 

deep learning models were also applied. The results show that the Bayesian CNN method gives the best accuracy of 99%. 

Among pretrained deep learning networks, Xception gives the best 97%. SVM with the Radial Basis Function (RBF) kernel 

gives 96% accuracy. 
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I. INTRODUCTION 

 

The creation of hyperspectral sensors and the 

associated software to evaluate the picture data they 

produce is the most significant recent development in 

remote sensing. Hyperspectral image analysis has 

developed over the last ten years into one of the most 

potent and rapidly expanding technologies in the 

world of remote sensing. The word "hyper" in 

"hyperspectral" alludes to the numerous measured 

wavelength bands and signifies "over" as in "too 

many." The ability to detect and differentiate 

spectrally distinct materials is made possible by the 

fact that hyperspectral pictures are spectrally 

overdetermined. An especially significant picture 

type is the hyperspectral image (HSI). Each pixel in 

the image has a distinct spectral structure that may be 

utilized to recognize ground objects that are invisible 

to the human eye. 

HSI offer spectral and spatial representations of 

objects, materials, and light sources. HSI are distinct 

from pictures taken with a typical RGB-color camera 

in two main things, the first is that the number of tiny 

picture slices that may be efficiently separated from 

the light spectrum by a hyperspectral camera varies 

on the camera and the application [1]. The second, 

RGB color camera separates the light spectrum into 

wide, overlapping red, green, and blue picture slices, 

which when combined seem realistic to the human 

eye. Although it may not be visible to the naked eye 

or an RGB camera, this fine-grained slicing in HSI 

exposes spectral structure that manifests in a variety 

of visual and optical phenomena, including as 

metamerism and color constancy [2]. Field and 

laboratory spectrometers often measure reflectance at 

a number of discrete wavelength bands that are 

spaced closely together, giving the resultant spectra 

the appearance of being continuous curves. When a 

spectrometer is included into an imaging sensor, the 

resultant pictures capture a reflectance spectrum for 

each pixel in the image. Each pixel's whole spectrum 

is produced as a consequence of measurements 

performed at several tiny, adjacent wavelength bands 

used to create the image. HSI may be seen as a cube 

with two spatial dimensions (pixels) and one spectral 

dimension (wavelength) [3]. There is a 

comprehensive intensity (grey-level) depiction of the 

scene's reflectance or radiance at each sample 

wavelength. As an example, shown in Figure 1, Pavia 

data could be presented as a traditional color image 

(left) and effective spectral reflectance at 

corresponding regions (right). 

 

 
Figure 1. Spectral reflectance, bands of HSI (Pavia) [4] 
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Applications in the real world frequently deal with 

multi-view data. Color information and texture 

information are two distinct types of elements seen in 

photos and movies that may be thought of as two-

view data [4]. One crucial aspect of HSI research is 

the categorization job. The main feature of the HSI is 

that the number of bands is typically greater than 

hundreds, which makes the categorization process 

challenging. Therefore, accurate categorization is a 

crucial part of examining the characteristics of 

ground objects. 

 

Supervised techniques, which are a subset of machine 

learning, are more typically employed for the HSI 

classification, although deep learning is also a 

significant subset of machine learning. Convolutional 

neural networks, in particular, show astonishing 

performance in the field of image identification using 

deep learning methods (CNN). 

 

Numerous studies have been done to address the issue 

of insufficient training data. The solutions, according 

to [4], can be divided into three categories, the first is 

creating new designs or modifying existing 

architectures to incorporate techniques like 

regularizers and data augmentation to improve 

network performance in this situation [5], [6]. The 

second is reducing the feature vectors' dimensionality 

to provide the classifiers with more detailed 

information. The third is generating synthetic data 

artificially to produce more training data [4], [5], and 

[7]. Since the spectral channels in HSRS pictures 

have a great deal of redundancy, using dimensionality 

reduction techniques, such PCA, is quite successful. 

In [8], PCA is employed to reduce the dimensionality 

of edge- preserving filters. Before passing the filters 

to the classifier, their dimensionality is decreased. 

The authors demonstrate the potency and 

performance enhancement of such feature vectors. 

For example, enhanced multi-attribute profile 

(EMAP) [9] uses PCA after the feature vector to 

provide the model a more potent and informative 

feature vector [4], [5]. In their footsteps, we modify 

this strategy and employ PCA to enhance 

performance. 

 

Recent years have seen a boom in the study of HIC 

methods based on the merging of spatial and spectral 

features. The extraction of spatial features frequently 

uses neighborhood spatial features, discrete Gabor 

transforms, and discrete wavelet transforms. There 

are several types of spatial spectrum feature fusion 

techniques. [6] suggested a PCA- based windowed 

wavelet transform hyperspectral decision fusion 

classification algorithm. For the dimensionality 

reduction of hyperspectral images, [7] use a modified 

tensor locality-preserving projection. Considering the 

deep learning topic of research. Convolutional neural 

networks were used to solve the HIC problem in [8, 

9, 10], and the results were outstanding. 

Several techniques were used on a variety of HIC 

datasets. [11] compared Support Machine Classifiers, 

k-Nearest Neighbor, and Random Forest for Land 

Cover Classification Using Sentinel-2 Imagery. 

Overall accuracy is 90–95%; SVM performs best, 

followed by RF, KNN, and then RF again. [12] used 

a variety of categorization techniques. According to 

his findings using data from the Pavia University, 

SVM performs best overall (88% accuracy), followed 

by 3-NN (84% accuracy). Support vector machine 

(SVM), K-Nearest neighbor (KNN), and 

convolutional neural network (CNN) comparative 

studies were performed by [13] on the Pavia 

University dataset. The findings suggest that SVM 

and KNN and CNN had an average accuracy of 

roughly 90%, 85%, and 96%, respectively. [14] 

employed several MLR techniques. One of them is 

SMLR, which provides Pavia University with 

(OA=78.78%). 

 

Bayesian Convolutional Neural Networks (BCNN) 

is a particular kind of deep neural network. In BNNs, 

probability distributions are used in place of one or 

more layer's network parameters. A particular set of 

weights is sampled from these distributions for 

network inference. Consequently, a BNN may be 

thought of as a distribution of networks. The many 

inference processes used by this distribution enable 

ensembling. The ensemble results' variance can be 

used as an extra measure of uncertainty, and the 

prediction is then the ensemble results' mean. 

Bayesian techniques have been used to analyze neural 

networks in several publications. The fundamental 

difficulty is that computing the real posterior 

probability distribution is hard. To compute the 

posterior, many approximation techniques have been 

examined and proposed. In their various maximum a-

posteriori (MAP) algorithms for neural networks, 

[15] took second order derivatives into account while 

estimating prior probabilities. Other attempts to 

increase approximation quality while keeping the 

computation manageable and appropriate to 

contemporary applications have been made [16]. 

However, out of those, two are the most effective. 

The first is to build the Bayesian CNN network using 

the approximate variational inference techniques 

Dropout and Gaussian Dropout. The second method 

uses Backprop [17] to construct the Bayesian CNN 

based on variational inference. It takes into account 

the weights' Gaussian probability distribution, which 

is determined by the mean and variance of two 

parameters. 

A dual-channel neural network design for the HSI 

classification approach based on DenseNet was 

described in [18]. A 1D DenseNet is used to extract 

spectral information from the proposed architecture, 

while a 2D DenseNet is used to retrieve spatial 

features. They were able to get greater classification 

accuracy, although the suggested method requires 

more training time. 
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II. METHODOLOGY 

 

A. Deep Bayesian Convolutional Neural Networks 

The major problem with Bayesian CNN approaches 

is that the true posterior probability distribution 

cannot be computed. To compute the posterior, many 

approximation techniques have been examined and 

proposed. 

Both strategies offer ways to approximatively 

measure uncertainty, as documented in the literature. 

A comparison of the two methods is shown in [19], 

and it is demonstrated that they both perform 

similarly on the MNIST (Modified National Institute 

of Standards and Technology) dataset which is a large 

database of handwritten digits [7]. 

Frequentist neural networks have a propensity to 

make forecasts that are too confident. In addition, 

they are vulnerable to the overfitting issue when not 

given enough training data. These constraints can be 

overcome by combining the concept of Bayesian 

learning with conventional neural networks. By 

integrating across the distribution of potential models 

and the prior probability, Bayesian models provide 

predictions. This makes them more resilient to 

overfitting by enabling an internal regularization. We 

used a variational inference-based Bayesian 

Convolutional Neural network (BCNN). 

By assuming the posterior of the model, Bayesian 

neural networks train a model. Even for moderately 

big models, accurate inference of the model posterior 

is computationally challenging and insoluble. As a 

result, the model posterior is often estimated. 

Variational inference is an efficient and well- liked 

approximation technique. 

The function 𝑓(𝑥) = 𝑦 estimates the output y from the 

inputs X given the input set 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 and a 

matching output set𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑛. Using 

Bayesian learning, one may extract the model 

posterior 𝑝(𝑓|𝑋, 𝑦) in a logical manner. The posterior 

can only be calculated using two components. 

- First, a prior distribution 𝑝(𝑓) that reflects an 

assumption made in the past on the estimator 

functions. 

- Second, a probability function 𝑝(𝑦|𝑓, 𝑋) that 

quantifies the likelihood that the model f will 

correctly forecast the output y in light of the 

observations X. 

 

The posterior is specifically produced by integrating 

over all possible estimator functions f that are 

parametric models with parameter set θ given an 

unknown set of data (x*, y*), 

 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑦) = ∫ 𝑝(𝑦∗|𝑓) 𝑝(𝑓|𝑥∗, 𝑋, 𝑦)𝑑𝑓 

= ∫ 𝑝(𝑦∗|𝑓) 𝑝(𝑓|𝑥∗, 𝜃) 𝑝(𝜃|𝑋, 𝑦) 𝑑𝑓𝑑𝜃 

(1) 

Due to the intractability of the distribution 𝑝(𝜃|𝑋, 𝑦), 

this integral is unsolvable. Therefore, the variational 

technique involves using a variational distribution 

q(θ) to approximate 𝑝(𝜃|𝑋, 𝑦). The original 

intractable distribution should be as similar to the 

contender q(θ) as is practicable. The Kullback- Leiber 

(KL) divergence may be used to determine how 

comparable 𝑝(𝜃|𝑋, 𝑦) and q(θ) are [8]. Maximizing 

the log evidence lower bound with regard to the 

parameter set θ is comparable to minimizing the 

aforementioned KL divergence: 

 
𝐾𝐿𝑉𝐼 = ∫𝑞(𝜃)𝑝(𝐹|𝑋, 𝜃)𝑙𝑜𝑔𝑝(𝑦|𝐹)𝑑𝐹𝑑𝜃 − 

𝐾𝐿(𝑞(𝜃)||𝑝(𝜃)) 
(2) 

A variational function that closely resembles the 

posterior is produced by maximizing KLVI.  

Equation 1 becomes simpler using to the 

approximation q(θ). 
𝑞(𝑦∗|𝑥∗) = ∫𝑝(𝑦∗|𝑓) 𝑝(𝑓|𝑥∗ , 𝜃) 𝑞(𝜃)𝑑𝑓 𝑑𝜃 

 (3) 

The network samples the network parameters from 

q(θ) while doing inference. 

For training BCNN via back-propagation, the 

posterior distribution on the neural network weights 

is learnt in Bayes using Backprop [18], [20]. An 

estimated distribution qα(θ) comparable to the 

genuine distribution p(θ) is defined since the true 

posterior is frequently intractable. By identifying the 

ideal parameter, the training entails reducing the KL 

divergence of qα(θ) and the true intractable posterior 

p(θ). This is done by using n chosen samples to 

approximate the integral from Eq.(4): 

 

 
 (4) 

where D represents the training dataset. θ (i) is a 

sample from the variational distribution 𝑞𝛼(𝜃|𝐷) , 

which we set as a Gaussian distribution with mean 

and standard deviation as parameters. The cost 

function in Eq. 4 consists of three terms. First, log 

𝑞𝛼(𝜃(𝑖)|𝐷) is the variational posterior with mean µ 

and standard deviation σ, 

 
(5) 

Second, log p(θ(i)) denotes the log prior, which is a 

zero-mean Gaussian distribution 

 
(6) 

Third, the likelihood log 𝑝(𝐷|𝜃(𝑖)) is the network 

output. 

To include Bayesian learning in CNNs and solve the 

intractable posterior distribution problem via 

variational inference, fully connected layers and 

convolutional layers with a probability distribution 

over the weights as filter weights must be created. In 

this scenario, samples from the relevant distribution 

would serve as the weights. The distributions are 

Gaussian, as was described in the part before, and the 

mean and variance of each weight distribution serve 
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as its defining characteristics. Shridhar et al. 

employed the Local Re-parameterization approach on 

the convolutional layers to adopt this concept [21]. 

To convert the global uncertainty to the local 

uncertainty, it is just a matter of rewriting and re-

parameterizing the equations above. This technique 

samples the activation maps b rather than the weights 

directly. Using this technique, the activation maps b 

are sampled rather than the weights directly, resulting 

in more effective and quicker computing. 

 

Consider the w variable for network weights. The 

variational posterior , 

where i, j inputs, and h, w filter height, width. The 

activation of the convolutional layer for the 

associated receptive field Ri has the following effects: 

 
(7) 

where  is the element-wise multiplication, 

and ∗ is the convolution operator. As shown, this 

approach splits the convolutional procedure that 

occurs within a layer into two operations: The Adam 

optimizer first treats the output of b as a frequentist 

output and updates it. The mean of the posterior is 

regarded as being this single-point estimate. The 

distribution's variance is discovered in the second 

process. This formula guarantees a positive variance 

that is not zero. In order to support both processes, 

Shridhar et al. developed the Soft-plus activation 

function [9]. 

 

B. Data preparation 

In order to apply a deep learning or Bayesian models, 

some primary steps were implemented: PCA, 

channel-wise shift and patches creating. One of the 

most used unsupervised dimensionality reduction and 

feature extraction approaches is principal component 

analysis (PCA). Principal components (PCs) 

produced by PCA are ordered by variance in 

descending order and are linearly independent. Most 

of the information is located in the first few PCs. 

PCA, however, struggles to deal with the complicated 

nonlinear properties of HSIs since it is a linear 

orthogonal transform approach [16]. The eigen value 

decomposition of the covariance matrix of the HSI 

bands serves as the foundation for the PCA 

mathematical principle [17]. 

Kernel PCA (KPCA) is one of the nonlinear 

expansions of PCA, which nonlinearly maps the 

original data to a high- dimensional feature space 

[18]. Nonlinear dimensionality reduction is discretely 

performed by using PCA in the high- dimensional 

feature space. In addition to deriving a number of 

related features from PCA, KPCA is free of some of 

the practical issues that other nonlinear PCA 

extensions experience, such as nonconvergence or 

convergence to local minima [19]. For feature 

extraction and picture denoising, KPCA and its 

expansions have shown to be effective tools. 

The channel-wise shift method is used between the 

PCA step and the first convolution layer to improve 

feature extraction capabilities and classification 

accuracy by emphasizing more significant spectral 

bands and suppressing less valuable ones. It was put 

forward in light of PCA's ranking fundamentals and 

convolution's margin impact, [22]. 

The channel-wise shift strategy is shown in Figure 2, 

and it aims to relocate the spectral bands that are 

comparatively more significant to a more central 

location for the most adequate convolutions. Instead, 

marginalizing the comparatively less significant 

spectral regions will help with information retrieval 

and processing efficiency. 

This technique can preserve informative channels in 

the middle of the efficient receptive fields while 

increasing the number of spatial feature extraction 

times. We can guarantee that by performing this 

procedure, the crucial spectral bands will remain in 

the center of all the channels, allowing for additional 

convolution operations. 

 

 
Figure 2. Channel-wise shift diagram. The more information in 

the spectral band, the deeper the color [23] 

 

The hyperspectral image was divided into patches of 

size windowsize-by-windowsize pixels with 

DimReduction (80) channels after channel-wise shift 

was applied. 

 

3-D convolution operations could be applied. The use 

of 3-D-kernels to extract spectral-spatial features is a 

sensible approach since HSI is a cubic data which 

could be thought as a 3-D tensor. The result of 3-D 

convolution includes spectral information. 

Figure 3 demonstrates how the 2-D convolution 

method concentrates on creating hyperspectral data 

by just taking into account the spatial correlation of 

each channel in the provided image. When 

performing 3-D convolution operation, the correlation 

between various channels is also employed to create 

spectral-spatial feature maps, which enhance the 

ability of feature representation. So, the 3-D 

convolution can extract spectrum-spatial 

characteristics despite having a greater computational 

cost, whereas the 2-D convolution can extract spatial 

information but is unable to gather significant data in 

later spectral bands. 

 
Figure 3. Models of 2-D and 3-D convolutions [22] 
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2-D and 3-D convolution was tested in Bayesian 

CNN model. 3D convolution required too much time 

to perform the third correlation operations. However, 

optimal results were obtained using Bayesian method. 

Whereas, in deep learning methods, the 2D 

convolutions are applied. 

Deeper architecture is a potential method for 

extracting features from hyperspectral data since it 

can learn more abstract properties at higher levels. A 

deep 3-D-CNN is frequently computationally pricey, 

nevertheless. As a result, the PCA technique is 

frequently used to emphasize the key features of input 

data while simultaneously improving efficiency. The 

first-order statistics are always added using standard 

max or average pooling algorithms. 

 

C. Machine learning methods 

SVM is a popular linear classifier for HSI 

classification that is associated with kernel functions 

and optimization theory. Particularly in scenarios 

when there are more spectral bands and fewer 

training samples available, SVM outperforms 

traditional supervised classification techniques. SVM 

performs better in HSI than other methods of classical 

image categorization [23]. The core element of 

invention is the kernel trick. To transfer the input 

space to a high- dimensional feature space, SVM uses 

a kernel. As a result, we must select kernel functions 

based on the feature number, such as polynomial 

kernel functions and radial basis kernel functions. 

Another option is to employ a composite kernel 

structure that integrates spectral and spatial data. 

Random forest is an approach for classifying data 

using several decision trees. Each tree in the random 

forest RF group of tree-based classifiers is trained 

using a bootstrapped set of training data. Each tree in 

the forest receives the classification-related data as an 

input. A "vote" for a certain class is the categorization 

that each tree provides. The categorization is made by 

the forest, which selects the class with the highest 

votes (over all the trees in the forest). A split in RF 

classification is found by looking through a random 

collection of variables at each node [23]. Two key 

aspects of RF are processing speed and a fair amount 

of precision. The final land cover map's accuracy can 

be impacted by the trees' independence or correlation, 

though. 

 

D. Deep learning methods 

The pretrained deep learning mode may be used by 

applying the dimension reduction using PCA, channel 

wise shift, and patches creation. 

ResNet uses residual structure to address the 

"degradation" issue with deep neural networks. It 

employs several parameter layers to learn the 

representation of residuals between input and output, 

in contrast to VGGs networks, which use parameter 

layers to try to learn the mapping between input and 

output [16]. 

The ResNet network served as a model for the 

DenseNet network. All layers are connected by 

DenseNet using a dense connection technique. By 

allowing the feature map learnt by each layer to be 

communicated directly to all succeeding layers as 

input, this connection strategy makes it easier to train 

the network and increases the effectiveness of the 

features and gradient transmission [17]. 

Two areas are primarily where the Inception-V3 

network has been developed. The Inception Module 

is first optimized using the branch structure, and then 

the bigger two- dimensional convolution kernel is 

split into two one- dimensional convolution kernels. 

With less computing required, this asymmetric 

structure can handle more and richer spatial 

information [21]. 

Inception-V3 has been improved by Xception. The 

network suggests a unique Depthwise Separable 

Convolution that aligns them in columns, with space 

transformation and channel transformation serving as 

its main tenets. Xception is speedier and has less 

settings than Inception [16]. 

NasNet uses the two main functionalities are normal 

cell and cell for reduction. Normal cells specify the 

size of the feature map, whereas reduction cells return 

the feature map that has been shrunk by a factor of 

two in terms of height and breadth [21]. 

EfficientNet: Using a set of predetermined scaling 

coefficients, the EfficientNet scaling technique 

equally adjusts network width, depth, and resolution 

as opposed to the conventional approach, which 

scales these variables randomly [19]. 

 

III. EXPERIMENTAL RESULTS 

 

A. Dataset Information 

These are two scenes that the ROSIS sensor captured 

while flying above Pavia in northern Italy [15]. 103 

spectral bands are present at Pavia University. Pavia 

University is 610*610 pixels, however some of the 

samples in the image are empty and must be 

eliminated before analysis since they lack 

information. The resolution in geometry is 1.3 meters. 

 

# Class Samples 
1 Asphalt 6631 

2 Meadows 18649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare soil 5029 

7 Bitumen 13330 

8 Self-Blocking Bricks 3682 

9 Shadows 947 
Table1. Ground truth classes for the Pavia University scene 

and their respective samples number 

 

Nine classes of interest are considered, with 

respective samples number for each class in Table 1. 

Figure 1 shows Sample band of Pavia University 

dataset (left), Ground truth of Pavia University 

dataset. 



Hyperspectral Images Classification with Deep Bayesian Neural Networks 

Proceedings of ACN International Conference, Istanbul, Turkey, 05th - 06th March, 2023 

25 

B. Proposed method 

The BCNN with previous classification methods were 

applied and implemented using the following steps 

which are illustrated in Figure 4 First, loading dataset 

from the University of Pavia and the ground truth. 

Data preparation stage includes the PCA approach to 

extract features and reduce dimensions, then applying 

channel wise shift technique. Patch creating was 

applied for BCNN and transfer learning models. 

Building the classifiers models and following the 

establishment of specific parameters was done. Using 

5-fold cross validation, the stage of training and 

testing was performed using the necessary functions 

in order to classify the HSI image to obtain its labels 

and classes. Using the differences between predicted 

and groundtruth labels, performance metrics were 

evaluated. 

 

 
 

Figure 4. Flowchart of the proposed approach 

 

C. Performance 

By comparing the previously trained models with 

various metrics, the performance of the suggested 

method is measured. By evaluating how well the 

learning algorithms perform on the testing dataset, 

one may judge the overall quality of the algorithms 

[24]. Performance and productivity of a confusion 

matrix are affected by four variables. The true 

positives, true negatives, false positives, and false 

negatives are used to gauge these characteristics. The 

following formulae can be used to demonstrate how 

accurate the measurement was. 

 

 
(8) 

 

Values of type TP stand for true positive (correctly 

identified), type FP for false positive (mis-classified), 

type FN for false negative, and type TN for true 

negative [24]. Specificity is connected to the 

conditional probability of a true negative which has 

been given a secondary class. As such, it estimates 

the likelihood of a negative labeling. It is denoted by: 

 

 
(9) 

 

where TN is the number of true negatives, or negative 

cases that are indeed negative and are classified as 

negative, and FP is the number of false positives, or 

negative instances that are wrongly classified as 

positive cases. Accuracy represents the most common 

stat for measuring the model’s ability to categorize. 

As such, accuracy was extremely important within 

the experimentation and was determined after every 

20 iterations. It also relates to how many samples 

were properly identified. It was calculated as: 

 

 
(10) 

 

Classification models are evaluated on a short data 

sample using a resampling approach called cross-

validation. 

 

The model determines how many groups should be 

created from every dataset using a single parameter 

(called k). Because of this, the model is usually 

referred to as k-fold cross-validation [25]. When 

choosing a particular value for k, this figure can be 

substituted for k within the model. In order words, 

k=10 equates to 10-fold cross-validation. 

 

D. Bayesian CNN results 

Applying the Bayesian approach, as previously 

reviewed, gives an accuracy about 99%. Table 2 

shows that the accuracy of most classes are around 

0.99, for the third class 0.98, for the ninth class 0.97. 

Noting little number of misclassified samples 

between the class “Gravel” and the class “Self-

Blocking Bricks”. 
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 Class Name Precision Recall F1-score Support 

1 Asphalt 0.998 0.987 0.992 1194 

2 Meadows 0.998 1.000 0.999 3357 

3 Gravel 0.984 0.992 0.988 378 

4 Trees 0.995 0.985 0.990 551 

5 Painted metal sheets 1.000 0.996 0.998 242 

6 Bare Soil 0.996 1.000 0.998 906 

7 Bitumen 0.996 1.000 0.998 239 

8 Self-Blocking Bricks 0.985 0.986 0.986 663 

9 Shadows 0.977 1.000 0.988 170 

Table.2 Bayesian results 

 

Window size significantly affects on the classification accuracy, as shown in Table 3. Increasing the window 

size gives better performance and speeds up the training process. 

 

 Window Size 

Model 5  5 7  7 9  9 11  11 13  13 15 15 50  50 

BCNN 77.4% 84.5% 93.4% 97.8% 98.3% 99.4% 99% 

EfficientNet 68.5% 62.6% 61.8% 64.5% 65% 67.3% 80% 

Inception 83.3% 90% 91.3% 90.9% 95.1% 91.8% 92% 

NasNet 41.3% 42.7% 44.8% 41.6% 43.3% 41.0% 66% 

ResNet 79.8% 80.3% 83.9% 83.4% 84.7% 84.3% 81% 

Xception 81.2% 85.2% 89.9% 94% 96% 97% 92% 

SVM 96 % 

RF 96 % 

Table.3 Window size effect 

 

E. SVM results 

Applying SVM classifier with RBF kernel gives an accuracy about 96%. In details, the performance for every 

class can be seen in Table 4. Noting that the third class “Gravel” has the lowest accuracy 0.87. However, the 

average accuracy is good. Misclassified samples size is relatively big, comparing with Bayesian. 

 

 Class Name Precision Recall F1-score Support 

1 Asphalt 0.96 0.97 0.97 1346 

2 Meadows 0.97 0.99 0.98 3685 

3 Gravel 0.87 0.86 0.86 420 

4 Trees 0.98 0.98 0.98 604 

5 Painted metal sheets 1.00 1.00 1.00 248 

6 Bare Soil 0.96 0.91 0.93 1034 

7 Bitumen 0.93 0.88 0.91 255 

8 Self-Blocking Bricks 0.91 0.92 0.92 762 

9 Shadows 1.00 1.00 1.00 201 

Table.4 SVM results 
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F. Xception results 

Pretrained models take more time comparing with SVM and Bayesian CNN. However, Xception network gives 

the best average accuracy of about 97%. 

 

 Class Name Precision Recall F1-score Support 

1 Asphalt 0.870 1.000 0.931 1213 

2 Meadows 0.996 1.996 0.996 3461 

3 Gravel 0.846 1.000 0.917 408 

4 Trees 0.980 0.923 0.950 590 

5 Painted metal sheets 1.000 1.000 1.000 239 

6 Bare Soil 1.000 1.000 1.000 947 

7 Bitumen 0.905 1.000 0.950 244 

8 Self-Blocking Bricks 1.000 0.774 0.873 721 

9 Shadows 1.000 0.643 0.783 197 

Table.5 Xception results 

 

IV. CONCLUSION 

 

In this study, Bayesian CNN was applied for the 

classification of Pavia hyperspectral image dataset. 

Two other approaches were applied and viewed, 

machine learning SVM RF methods, pertained deep 

learning. 

 

PCA was applied in all methods for dimensionality 

reduction and feature extraction. 5-cross validation 

was also applied as a good technique to apply the 

training and testing process covering randomly the 

whole dataset. Knowing that the terminal spectral 

bands in Pavia HSI are more informative, the 

channel-wise shift technique was applied in Bayesian 

and deep learning methods. Splitting the 

hyperspectral image into patches of size m by n 

pixels was done using patches creating. 

Bayesian CNN gives the best results of 99% 

accuracy. However, it was not easy to implement this 

method. Machine learning methods such as SVMs, 

RFs have been widely used in the hyperspectral 

analysis community. Using PCA for dimension 

reduction and features extraction had enhanced the 

performance of classifier. SVM with RBF kernel 

gives good result (96% accuracy). Pretrained deep 

learning networks take long time for classification. 

However, Xception model gives an accuracy of about 

97%. 

Applying more advanced techniques require powerful 

computational capabilities. However, more tests 

could be done using other HSI dataset (Indian Pines, 

Salinas). 
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