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Abstract - Bitcoin is a decentralized digital cryptocurrency that can be sent from user to user on the peer-to-peer bitcoin 
network without the use of intermediaries. The main problem with these types of cryptocurrencies is price volatility. This 
paper demonstrates a high-performance model with Univariate Time Series Data and applying Regression using an invariant 
vector representation of data, trained on different time ranges in data (2015 to 2021 and 2019 to 2021), results show 
improvement over the current literature. 
 

 
I. INTRODUCTION 
 
Bitcoin is the most popular cryptocurrency in the 
world right now. Cryptocurrency allows users to send 
and receive digital currency over the Internet in a 
secure and anonymous manner. Because of 
speculation, Bitcoin's price is extremely volatile. 
While Bitcoin can be used to purchase tangible 
products in some places, the vast majority of Bitcoin 
transactions are still financial in nature. As a result, 
Bitcoins are bought and sold just like any other 
investment. The buy-sell cycle is what causes 
Bitcoin's price to fluctuate so much. 
 
Despite its high volatility, many researchers have 
been working in the field of cryptocurrency price 
prediction and have demonstrated excellent results. 
These studies involve different machine learning 
methods for end-of-day price forecast and 
increase/decrease prediction. 
 
In this paper, we present a new approach to Forecast 
on Univariate Time Series Data (Price) and predict 
Bitcoin price changes by the hour. 
 
Our results have exceeded previous research and use 
a novel architecture that has never been used before. 
 
II. RELATED WORK 
 
The popularity of bitcoin as a digital cryptocurrency 
began to surge in 2014, resulting in price volatility 
and a high volume of daily transactions. 
 
A variety of literature have analyzed the movement of 
prices of bitcoin using several indicators such as 
social media traffic[1] and high dimensional features 
of historical data[2]. 
 
There are basically two types of model-based 
approaches in time series forecasting: statistical and 
neural networks. 

The statistical models for time series data, such as 
ARIMA[3] have shown encouraging results in 
generating short term forecasts but perform poorly on 
data with high variance, which is due to its inability 
to learn non-linear patterns and non-stationarity in 
data. 
 
The application of neural networks to time series data 
forecasting has yielded promising results, particularly 
when RNNs are used (Recurrent Neural Networks). 
[5] compared the results using ARIMA and an RNN 
with Bayesian Optimisation coupled with an LSTM 
Cell. 
[7] used RNN and GRNN to obtain price predictions 
for a set of cryptocurrencies considering high 
liquidity. 
 
The use of rapid fourier transforms and fuzzy 
transforms[8] as a technique to represent data into 
vectors and utilise that as an embedding into NN 
based models was the beginning of alternate 
representation in time series. 
However, with these transformations, data is 
represented using a predefined set of frequencies that 
cannot be learned. 
 
 
To learn representations of data similar to contextual 
vectors in computer vision and natural language 
processing, Time2Vec[6] was introduced. Our goal is 
to feed the architecture with vector representations 
created by Time2Vec[6] implementation. 
 
III. METHODOLOGY 
 
The proposed methodology describes the elements of 
the architecture(in figure 2). 
 
The dataset used for our research was downloaded 
from CyptoDataDownload. This website provides 
historical cryptocurrency price data in time series 
format for three different time intervals: daily, hourly, 
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