Paper Title
Design and Experiment of Coil Gun to Apply Electromagnetic Launcher System

Abstract
This paper reports the design and experiments for a high drive force of projectile in a coil gun system. Currently, the coil gun has been studied to apply an electromagnetic launcher. A coil gun launches a projectile by the attractive magnetic force of the electromagnetic coil. The drive force of projectile is proportional to the magnetic force generated by the electromagnetic coil. The current affects the life of the coil and the current limit exists. Therefore, the coil gun design, which does not exceed the current limit and the magnetic forces are ate the maximum, is required. For this purpose, this study calculated the magnetic flux density and forces of the coil gun system and determined the current limit of the coil using the Onderdonk’s equation. Based on the design result, a prototype was manufactured and an experiment was conducted to measure the muzzle velocity of the projectile. The fired projectile was analyzed using a CCD camera, and the muzzle velocity was 21m/s. In addition, a comparison of the experimental value and analysis value using commercial electromagnetic analysis software MAXWELL revealed an error of approximately 9.5%. Keywords - Coil gun, Electromagnetic Launcher, Magnetic force, Muzzle velocity, Solenoid design