Paper Title
A New PCA Based High Dimensional Reinforcement Learning Multi Agent Approach for Traffic Shaping in Routers
Abstract
- In this paper, the concept of Principle Component Analysis (PCA) is invoked besides reinforcement learning and multi-agent systems to develop a novel intelligent high dimensional reinforcement learning traffic shaper for dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm instead of static allocation of this parameter. This implementation when is compared to our previous work where a simple reinforcement learning traffic shaper was developed, the better and more reasonable utilization of bandwidth and less traffic overload in other parts of the network is more appeared. Indeed, the imposed PCA on the inputs of the reinforcement algorithm gives this ability to the traffic shaping agents to use more vital parameters of the network in their decision process without any concern about exceeding the volume of the calculations and the time. This novel work is also valuable in this aspect that it offers a high dimensional functionality to the reinforcement learning algorithm in the context of multi-agent systems where incrementing dimension is a practical limitation. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show satisfactory behaviors from the aspects of keeping whole dropping probability low while injecting as many packets as possible into the network in order to utilize the available bandwidth as much as possible.
Keywords- High Dimensional, Principle Component Analysis(PCA), Traffic Shaping In Routers.