Paper Title
User-Centered Approach to Optimizing Public Space Lighting

Public space lighting (PSL) of outdoor urban areas promotes comfort, defines spaces and neighborhood identities, enhances perceived safety and security, and contributes to residential satisfaction and wellbeing. However, if excessive or misdirected, PSL leads to unnecessary energy waste and increased greenhouse gas emissions, poses a non-negligible threat to the nocturnal environment and may become a potential health hazard. At present, PSL is designed according to international, regional, and national standards, which consolidate best practice. Yet, knowledge regarding the optimal light characteristics needed for creating a perception of personal comfort and safety in densely populated residential areas, and the factors associated with this perception, is still scarce. The presented study suggests a paradigm shift in designing PSL towards a user-centered approach, which incorporates pedestrians' perspectives into the process. The study is an ongoing joint research project between China and Israel Ministries of Science and Technology. Its main objectives are to reveal inhabitants' perceptions of and preferences for PSL in different densely populated neighborhoods in China and Israel, and to develop a model that links instrumentally measured parameters of PSL (e.g., intensity, spectra and glare) with its perceived comfort and quality, while controlling for three groups of attributes: locational, temporal, and individual. To investigate measured and perceived PSL, the study employed various research methods and data collection tools, developed a location-based mobile application, and used multiple data sources, such as satellite multi-spectral night-time light imagery, census statistics, and detailed planning schemes. One of the study’s preliminary findings is that higher sense of safety in the investigated neighborhoods is not associated with higher levels of light intensity. This implies potential for energy saving in brightly illuminated residential areas. Study findings might contribute to the design of a smart and adaptive PSL strategy, that enhances pedestrians’ perceived safety and comfort, while reducing light pollution and energy consumption. Keywords - Energy efficiency, Light pollution, Public space lighting (PSL), Safety perceptions, Smart cities