Paper Title
Machine Learning System using CNN Mobile Net Architecture for Image-Based Plant Diseases Detection

Abstract
Agriculture is one of the most important sectorsfor many countrieswith the development of export the agricultural products. Plant diseases are common problem in the agricultural field which is also a major issue for farmers. The classification of plant diseases is very useful to manage the plant health situation during the cultivation time by using a good plant detection system. Machine learning is the most effective modern technique for image classification method.This paper introduces how to build Convolution Neural Network (CNN) machine learning model by using MobileNet architecture to identify plant diseases. The purpose of this paper is to present a design of efficient models called MobileNet Architecture with build the specification of image dataset and perform higher accuracy result compared to other popular Machine Learning models. Index Terms - Machine Learning, Convolution Neural Network (CNN),Mobile Net Architecture, Tensor Flow, Image Processing, Beans, Plant Diseases.