Paper Title
Performance of Classification Techniques on Parkinson's Disease

Abstract
Nowadays, many methods and algorithms have been developed that may influence the decision-making process and are used to extract meaningful information. One of the well know methods or approaches in information extraction is data mining. Data mining tries to establish the best model to support decision system, to extract information and to categorize, to summarize and etc. according to given data set. The Parkinsonís disease-related data obtained from UCI Machine Learning Database is used to try several data mining techniques and methods to see the successes of techniques regarding to diagnosis accuracy ratio to support the expert. So far, Parkinsonís disease can actually be diagnosed after medical examinations. However, diagnosis with computer has been the subject of many researches due to demand to help physician. In this study, a research is conducted using 16 different data mining techniques and methods to support the doctors in the decision-making process. The results of the applied methods for the study regarding to diagnosis accuracy ratesare as follows; IB1 (96.4103%), RotationForest (92.3077%) RandomForest (91.7949%), MultilayerPerceptron (90.7692%), ClassificationViaRegression (88.2051%), Bagging (87.6923%), JRip (87.6923%) SMO (87.1795%), OneR (86.1538%), NBTree (86.1538%), Dagging (85.6410%), DTNB (85.1282%), DecisionTable (81.0256%), J48 (80.5128%), BayesNet (80.0000%) and NaÔve Bayes (69.2308%). Keywords- Data Mining, Classification, Parkinson Disease.